
GT4 GridFTP for Developers:
The New GridFTP Server

Bill Allcock, ANL

GlobusWORLD 2005

Feb 7-11, 2005

GlobusWORLD 2005 2

Overview

Introduction to GridFTP
Overview of asynchronous programming

The server Data Storage Interface (DSI)

GridFTP Client Library (Time Permitting)

GlobusWORLD 2005 3

What is GridFTP?

A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

A Protocol
Multiple independent implementations can interoperate

This works. Both the Condor Project at Uwis and Fermi Lab have
home grown servers that work with ours.

Lots of people have developed clients independent of the Globus
Project.

We also supply a reference implementation:
Server

Client tools (globus-url-copy)

Development Libraries

GlobusWORLD 2005 4

GridFTP: The Protocol

FTP protocol is defined by several IETF RFCs

Start with most commonly used subset
Standard FTP: get/put etc., 3rd-party transfer

Implement standard but often unused features
GSS binding, extended directory listing, simple restart

Extend in various ways, while preserving
interoperability with existing servers

Striped/parallel data channels, partial file, automatic &
manual TCP buffer setting, progress monitoring, extended
restart

GlobusWORLD 2005 5

GridFTP: The Protocol (cont)

Existing standards
RFC 959: File Transfer Protocol

RFC 2228: FTP Security Extensions

RFC 2389: Feature Negotiation for the File
Transfer Protocol

Draft: FTP Extensions

GridFTP: Protocol Extensions to FTP for the Grid
Grid Forum Recommendation

GFD.20

http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

GlobusWORLD 2005 6

wuftpd based GridFTP
Functionality prior to GT3.2

Security
Reliability / Restart
Parallel Streams
Third Party Transfers
Manual TCP Buffer Size
Partial File Transfer
Large File Support
Data Channel Caching
Integrated
Instrumentation
De facto standard on the
Grid

New Functionality in 3.2

Server Improvements

Structured File Info

MLST, MLSD

checksum support

chmod support (client)

globus-url-copy changes

File globbing support

Recursive dir moves

RFC 1738 support

Control of restart

Control of DC security

GlobusWORLD 2005 7

New GT4 GridFTP Implementation
NOT based on wuftpd

100% Globus code. No licensing issues.

GT3.9.4 (released in Dec.) has a very solid alpha. It
will be in the GT4.0 Final scheduled for 2Q2005.

wuftpd specific functionality, such as virtual domains,
will NOT be present

Has IPV6 support included (EPRT, EPSV), but we have
limited environment for testing.

Based on XIO

Extremely modular to allow integration with a variety
of data sources (files, mass stores, etc.)

Striping will also be present in 4.0

GlobusWORLD 2005 8

Extensible IO (XIO) system
Provides a framework that implements a
Read/Write/Open/Close Abstraction
Drivers are written that implement the
functionality (file, TCP, UDP, GSI, etc.)
Different functionality is achieved by building
protocol stacks
GridFTP drivers will allow 3rd party applications to
easily access files stored under a GridFTP server
Other drivers could be written to allow access to
other data stores.
Changing drivers requires minimal change to the
application code.

GlobusWORLD 2005 9

Striped Server
Multiple nodes work together and act as a single
GridFTP server

An underlying parallel file system allows all nodes to
see the same file system and must deliver good
performance (usually the limiting factor in transfer
speed)

I.e., NFS does not cut it

Each node then moves (reads or writes) only the pieces
of the file that it is responsible for.

This allows multiple levels of parallelism, CPU, bus, NIC,
disk, etc.

Critical if you want to achieve better than 1 Gbs
without breaking the bank

GlobusWORLD 2005 10

MODE E
SPAS (Listen)
 - returns list of host:port pairs
STOR <FileName>

MODE E
SPOR (Connect)
 - connect to the host-port pairs
RETR <FileName>

18-Nov-03

GridFTP Striped Transfer

Host Z

Host Y

Host A

Block 1

Block 5

Block 13

Block 9

Host B

Block 2

Block 6

Block 14

Block 10

Host C

Block 3

Block 7

Block 15

Block 11

Host D

Block 4

Block 8 - > Host D

Block 16

Block 12 -> Host D

Host X

Block1 -> Host A

Block 13 -> Host A

Block 9 -> Host A

Block 2 -> Host B

Block 14 -> Host B

Block 10 -> Host B

Block 3 -> Host C

Block 7 -> Host C

Block 15 -> Host C

Block 11 -> Host C

Block 16 -> Host D

Block 4 -> Host D

Block 5 -> Host A

Block 6 -> Host B

Block 8

Block 12

GlobusWORLD 2005 11

TeraGrid Striping results

Ran varying number of stripes

Ran both memory to memory and disk to
disk.

Memory to Memory gave extremely high
linear scalability (slope near 1).

We achieved 27 Gbs on a 30 Gbs link
(90% utilization) with 32 nodes.

Disk to disk we were limited by the storage
system, but still achieved 17.5 Gbs

GlobusWORLD 2005 12

Memory to Memory
Striping Performance

BANDWIDTH Vs STRIPING

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

GlobusWORLD 2005 13

Disk to Disk Striping Performance
BANDWIDTH Vs STRIPING

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60 70

Degree of Striping

B
an

dw
id

th
 (M

bp
s)

Stream = 1 # Stream = 2 # Stream = 4 # Stream = 8 # Stream = 16 # Stream = 32

GlobusWORLD 2005 14

GridFTP: Caveats

Protocol requires that the sending side do the
TCP connect (possible Firewall issues)

Client / Server
Currently, no simple encapsulation of the server
side functionality (need to know protocol),
therefore Peer to Peer type apps VERY difficult

A library with this encapsulation is on our radar, but no
timeframe.

Generally needs a pre-installed server
Looking at a “dynamically installable” server

GlobusWORLD 2005 15

Overview

Introduction to GridFTP

Overview of asynchronous programming
The server Data Storage Interface (DSI)

GridFTP Client Library (Time Permitting)

GlobusWORLD 2005 16

Asynchronous Programming

There are 3 basic event models
Blocking: Code does not make progress until
event handling is finished.

Non-blocking: Code can make progress, but
there is typically a large case or if structure.

Asynchronous: No in-line path of execution.
Event handlers are registered and executed
as needed.

GlobusWORLD 2005 17

Asynch Programming is complicated

There is no in-line logic that can be easily
looked at and understood.

All state needs to be packaged up in a
structure and passed through.

You need to be careful of race conditions.

The event handling system is not really
“visible” so it seems like there is some
“magic” involved.

GlobusWORLD 2005 18

The callback is everything

The term callback may be a bit confusing,
because it does not necessarily “call back”
to some other process.

Think of it as “Now that I am done, what
should happen next?”

main()

{

1();

2();

3();

}

2(cb=3) { … return()};

3(cb=done) {… return()};

main()

{

1(cb =2);

}

GlobusWORLD 2005 19

Example Code
In main():
bytes_read = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
globus_ftp_client_register_write(&handle, buffer, bytes_read, global_offset,

feof(fd), data_cb, (void *) fd);

In data_cb():
if(!feof(fd)
{

bytes_read = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
if (ferror(fd))
{

printf("Read error in function data_cb; errno = %d\n", errno);
globus_mutex_unlock(&lock);
return;

}
globus_ftp_client_register_write(

handle,
buffer,
bytes_read,
global_offset,
feof(fd),
data_cb,
(void *) fd);

cb_ref_count++;
global_offset += bytes_read;

}

GlobusWORLD 2005 20

Globus Thread Abstraction

With Globus libraries, you write threaded and
non-threaded code the same way.

use globus_cond_wait and globus_cond_signal
in a threaded build they translate to the
standard pthread calls

in a non-threaded they translate to
globus_poll_blocking and globus_signal_poll

This allows the same code to be built either
threaded or non-threaded.

GlobusWORLD 2005 21

Non-Threaded
During initialization the XIO select poller callback is registered
in the callback library queue. It is always ready.

Registering your callback places it in the same queue.

globus_cond_wait calls globus_poll_blocking which initiates
the callback library queue processing. This will not return (in
general) until globus_cond_signal (globus_signal_poll) is
called.

Callbacks can be ready immediately or after a wait time, they
can be one-shot or periodic.

If nothing else is ready, XIO select poller determines how long
before the next callback will be ready and sleeps till then.

So callbacks get queued and executed from either the
callback library or XIO select poller.

GlobusWORLD 2005 22

Threaded

In this case, things work as expected ☺

globus_cond_wait calls pthread_cond_wait and
puts the main thread to sleep.

The select loop runs in its own thread.

globus_cond_signal calls pthread_cond_signal
and wakes up the thread waiting on the cond
(typically main).

Note that POSIX allows the thread to wake up
aribitrarily and so the cond_wait should be
enclosed in some sort of while (!done) loop

GlobusWORLD 2005 23

Lets look at the web examples

http://www-unix.globus.org/toolkit/docs/3.2/
developer/globus-async.html

http://www-unix.globus.org/toolkit/docs/3.2/developer/globus-async.html
http://www-unix.globus.org/toolkit/docs/3.2/developer/globus-async.html
http://www-unix.globus.org/toolkit/docs/3.2/developer/globus-async.html

GlobusWORLD 2005 24

Overview

Introduction to GridFTP

Overview of asynchronous programming

The server Data Storage Interface (DSI)
GridFTP Client Library (Time Permitting)

GlobusWORLD 2005 25

New Server Architecture
GridFTP (and normal FTP) use (at least) two
separate socket connections:

A control channel for carrying the commands
and responses

A Data Channel for actually moving the data

Control Channel and Data Channel can be
(optionally) completely separate processes.

A single Control Channel can have multiple
data channels behind it.

This is how a striped server works.

In the future we would like to have a load
balancing proxy server work with this.

GlobusWORLD 2005 26

New Server Architecture
Data Transport Process (Data Channel) is
architecturally, 3 distinct pieces:

The protocol handler. This part talks to the network and
understands the data channel protocol
The Data Storage Interface (DSI). A well defined API that
may be re-implemented to access things other than POSIX
filesystems
ERET/ESTO processing. Ability to manipulate the data
prior to transmission.

currently handled via the DSI
In V4.2 we to support XIO drivers as modules and chaining

Working with several groups to on custom DSIs
LANL / IBM for HPSS
UWis / Condor for NeST
SDSC for SRB

GlobusWORLD 2005 27

Possible Configurations
Typical Installation Separate Processes

ControlControl
Data

Data

Striped Server (future)Striped Server

Control Control

Data Data

GlobusWORLD 2005 28

Third Party Transfer
RFT Client

SOAP
Messages

Notifications
(Optional)

RFT Service

Data
Channel

Protocol
Interpreter

Master
DSI

Data
Channel

Slave
DSI

IPC
Receiver

IPC Link

Master
DSI

Protocol
Interpreter

Data
Channel

IPC
Receiver

Slave
DSI

Data
Channel

IPC Link

GlobusWORLD 2005 29

The Data Storage Interface (DSI)

Unoriginally enough, it provides an interface to
data storage systems.

Typically, this data storage system is a file
system accessible via the standard POSIX API,
and we provide a driver for that purpose.

However, there are many other storage
systems that it might be useful to access data
from, for instance HPSS, SRB, a database,
non-standard file systems, etc..

GlobusWORLD 2005 30

The Data Storage Interface (DSI)
Conceptually, the DSI is very simple.

There are a few required functions (init,
destroy)

Most of the interface is optional, and you can
only implement what is needed for your
particular application.

There are a set of API functions provided that
allow the DSI to interact with the server itself.

Note that the DSI could be given significant
functionality, such as caching, proxy, backend
allocation, etc..

GlobusWORLD 2005 31

Developer Implemented Functions
Below is the structure used to hold the
pointers to your functions.
This can be found in <install>/source-
trees/gridftp/server/src

typedef struct globus_gfs_storage_iface_s

{

int descriptor;

/* session initiating functions */

globus_gfs_storage_init_t init_func;

globus_gfs_storage_destroy_t destroy_func;

/* transfer functions */

globus_gfs_storage_transfer_t list_func;

globus_gfs_storage_transfer_t send_func;

globus_gfs_storage_transfer_t recv_func;

globus_gfs_storage_trev_t trev_func;

/* data conn funcs */

globus_gfs_storage_data_t active_func;

globus_gfs_storage_data_t passive_func;

globus_gfs_storage_data_destroy_t data_destroy_func;

globus_gfs_storage_command_t command_func;

globus_gfs_storage_stat_t stat_func;

globus_gfs_storage_set_cred_t set_cred_func;

globus_gfs_storage_buffer_send_t buffer_send_func;

} globus_gfs_storage_iface_t;

GlobusWORLD 2005 32

Master vs. Slave DSI

If you wish to support striping, you will need two
DSIs

The Master DSI will be in the PI or front end. It
must implement all functions (that you want to
support).

Usually, this is relatively trivial and involves minor
processing and then “passing” the command over
the IPC channel to the slave DSI

Any functions not implemented will be handled by
the server if possible (non-filesystem, active, list)

All DSI’s must implement the init_func and
destroy_func functions.

GlobusWORLD 2005 33

Slave Functions
The slave DSI does the real work. It typically
implements the following functions:

send_func: This function is used to send data
from the DSI to the server (get or RETR)

recv_func: This function is used to receive data
from the server (put or STOR)

stat_func: This function performs a unix stat,
i.e. it returns file info. Used by the list function

command_func: This function handles simple
(succeed/fail or single line response) file system
operations such as mkdir, site chmod, etc.

GlobusWORLD 2005 34

Slave Functions (cont)

If you implement active/passive (you
normally shouldn’t) you will need to
implement data_destroy to free the data
channel memory.

The set_cred function normally does not
need to be implemented.

GlobusWORLD 2005 35

Additional Master Functions
As noted before, the master should (must?)
implement all functions. Besides the sender
functions, these include:

active_func: This is for when the DSI will be
doing a TCP connect.

The master figures out who gets what IP/port info and then
passes it through.
The slave should not need to implement this. The server
can handle this for you.

passive_func: The counter-part to the
active_func when the DSI will be the listener
list_func: This should be passed through and
will handle LIST, NLST, MLST, etc..

GlobusWORLD 2005 36

Additional Master Functions
There are also some utility functions the
master should (must?) implement:

data_destroy_func: Frees the memory
associated with the data channel. This should
be a simple pass through, unless you
implement your own active/passive functions.

trev_func: This handles the restart and
performance markers, but should be a simple
pass through

If you choose not to implement any of these
functions you need to have a good reason.

GlobusWORLD 2005 37

IPC Calls
These calls are how the master DSI “passes”
the call to the slave DSI
The IPC calls are basically the same as the DSI
calls.

globus_gfs_ipc_iface_stat_t stat_func;
globus_gfs_storage_stat_t stat_func;

These calls implement an internal, binary
protocol to transfer the necessary structures
between the front end and the back end.
The IPC receiver receives the message and
then invokes the sender DSI. The sender DSI
does not know, nor does it need to know,
whether it is local or remote.

GlobusWORLD 2005 38

Helper Functions that should be used
When implementing the DSI functions, the
following helper functions should be called:

<function>_finished: This tells the server that a
specific function (such as recv) has completed

all functions have finished functions. There is also a generic
finished. The send and recv also have start calls.

register[read|write]: This is how file data is
transferred between the DSI and the server.
bytes_written: This should be called anytime the
DSI successfully completes a write to its own
storage system. This allows performance and
restart markers to be generated

GlobusWORLD 2005 39

Helper Functions that should be used

get_concurrency: Tells you the number of
outstanding reads or writes you should have
based on the parallelism.

get_blocksize: This indicates the buffer size that
you should exchange with the server via the
register_[read|write].

get_[read|write]_range: This tells the DSI which
data it should be sending.

This handles striping (this DSI only needs to send a portion of
the file), restart (including “holey” transfers), and partial files.

read should be called repeatedly until it returns zero.

write is only a hint (you have to write where the offset tells
you) and should only be called once.

GlobusWORLD 2005 40

Overview

Introduction to GridFTP

Overview of asynchronous programming

The server Data Storage Interface (DSI)

GridFTP Client Library (Time Permitting)

GlobusWORLD 2005 41

Writing a GridFTP Client

Module Activation / Initialization

Check Features

Select Mode

Set Attributes

Enable any needed plug-ins

Execute the operation

Module Deactivation / Clean up

GlobusWORLD 2005 42

Initialization

globus_module_activate(GLOBUS_FTP_CLI
ENT_MODULE)

Must be called in any program that use the
client library.

Will automatically call module_activate for
any required lower level modules (like
globus_io)

GlobusWORLD 2005 43

Checking Features

call globus_ftp_client_features_init

then call globus_ftp_client_feat
this is a non-blocking call, so you will need
to wait on it to finish.

you need only call this once

Once globus_ftp_client_feat has returned,
globus_ftp_client_is_feature_supported
can be called as often as necessary for the
various features.

GlobusWORLD 2005 44

Attributes
Very powerful feature and control much of
the functionality
Two types of attributes:

Handle Attributes: Good for an entire
session and independent of any specific
Operation
Operation Attributes: Good for a single
operation.

Files:
globus_ftp_client_attr.c
globus_i_ftp_client.h

GlobusWORLD 2005 45

Attributes (Cont)

Handle Attributes:
Initialize/Destroy/Copy Attribute Handle

Connection Caching: Either all, or URL by
URL.

Plugin Management: Add/Remove Plugins

GlobusWORLD 2005 46

Attributes (Cont)

Operation Attributes
Parallelism

Striped Data Movement

Striped File Layout

TCP Buffer Control

File Type

Transfer Mode

Authorization/Privacy/Protection

Functions
globus_ftp_client_operationattr_set_<attribute>(&attr, &<attribute_struct>)

globus_ftp_client_operationattr_get_<attribute>(&attr, &<attribute_struct>)

GlobusWORLD 2005 47

Attributes (Cont)
Example Code (structs and enums in
globus_ftp_control.h):

globus_ftp_client_handle_t handle;
globus_ftp_client_operationattr_t attr;
globus_ftp_client_handleattr_t handle_attr;
globus_size_t parallelism_level = 4;
globus_ftp_control_parallelism_t parallelism;
globus_ftp_control_layout_t layout;

globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
globus_ftp_client_handleattr_init(&handle_attr);
globus_ftp_client_operationattr_init(&attr);
parallelism.mode = GLOBUS_FTP_CONTROL_PARALLELISM_FIXED;
parallelism.fixed.size = parallelism_level;
globus_ftp_client_operationattr_set_mode(&attr,

GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);
globus_ftp_client_operationattr_set_parallelism(&attr, ¶llelism);
globus_ftp_client_handle_init(&handle, &handle_attr);

GlobusWORLD 2005 48

Mode S versus Mode E

Mode S is stream mode as defined by RFC 959.
No advanced features accept simple restart

Mode E enables advanced functionality
Adds 64 bit offset and length fields to the header.

This allows discontiguous, out-of-order transmission
and along with the SPAS and SPOR commands, enable
parallelism and striping.

Command:
globus_ftp_client_operationattr_set_mode(&attr, GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);

GlobusWORLD 2005 49

Plug-Ins
Interface to one or more plug-ins:

Callouts for all interesting protocol events
Allows monitoring of performance and failure

Callins to restart a transfer
Can build custom restart logic

Included plug-ins:
Debug: Writes event log
Restart: Parameterized automatic restart

Retry N times, with a certain delay between each try
Give up after some amount of time

Performance: Real time performance data

GlobusWORLD 2005 50

Plug-Ins (Cont.)
Coding:

globus_ftp_client_plugin_t *plugin;
globus_ftp_client_plugin_set_<type>_func

Macro to make loading the struct easier

globus_ftp_client_handleattr_add_plugin(at
tr, plugin)

Files:
globus_ftp_client_plugin.h
globus_ftp_client.h
globus_ftp_client_plugin.c
Also some internal .h files

GlobusWORLD 2005 51

Plug-Ins (Cont.)
A plugin is created by defining a
globus_ftp_client_plugin_t which contains the
function pointers and plugin-specific data needed for
the plugin's operation. It is recommended that a
plugin define a a globus_module_descriptor_t and
plugin initialization functions, to ensure that the
plugin is properly initialized.

Every plugin must define copy and destroy
functions. The copy function is called when the plugin
is added to an attribute set or a handle is initialized
with an attribute set containing the plugin. The
destroy function is called when the handle or
attribute set is destroyed.

http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__plugins.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__plugins.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__plugins.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__plugins.html

GlobusWORLD 2005 52

Plug-Ins (Cont.)

Essentially filling in a structure of function
pointers:

Operations (Put, Get, Mkdir, etc)

Events (command, response, fault, etc)

Called only if both the operation and event
have functions defined

Filtered based on command_mask

GlobusWORLD 2005 53

High Level Calls

globus_ftp_client_put/get/3rd Party
Function signature:

globus_result_t globus_ftp_client_get
(globus_ftp_client_handle_t *handle,
const char *url,

globus_ftp_client_operationattr_t *attr,
globus_ftp_client_restart_marker_t *restart,
globus_ftp_client_complete_callback_t
complete_callback,
void *callback_arg)

Example: globus_ftp_client_put_test.c

http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__operations.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__operations.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__handle.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__handle.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__operationattr.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/unionglobus__ftp__client__restart__marker__t.html
http://www-unix.globus.org/api/c/globus_ftp_client/html/group__globus__ftp__client__operations.html

GlobusWORLD 2005 54

Parallel Put/Get

Parallelism is hidden. You are not required
to do anything other than set the
attributes, though you may want to for
performance reasons.

Doc needs to be updated. Does not have
enums or structures. Look in
globus_ftp_control.h

GlobusWORLD 2005 55

Deactivate / Cleanup

Free any memory that *you* allocated

Call the necessary destroy and deactivate
functions:

globus_ftp_client_handleattr_destroy(&handle_attr);
globus_ftp_client_operationattr_destroy(&operation_attr);
globus_ftp_client_handle_destroy(&handle);
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

	GT4 GridFTP for Developers:The New GridFTP Server
	Overview
	What is GridFTP?
	GridFTP: The Protocol
	GridFTP: The Protocol (cont)
	wuftpd based GridFTP
	New GT4 GridFTP Implementation
	Extensible IO (XIO) system
	Striped Server
	TeraGrid Striping results
	Memory to MemoryStriping Performance
	Disk to Disk Striping Performance
	GridFTP: Caveats
	Overview
	Asynchronous Programming
	Asynch Programming is complicated
	The callback is everything
	Example Code
	Globus Thread Abstraction
	Non-Threaded
	Threaded
	Lets look at the web examples
	Overview
	New Server Architecture
	New Server Architecture
	Possible Configurations
	Third Party Transfer
	The Data Storage Interface (DSI)
	The Data Storage Interface (DSI)
	Developer Implemented Functions
	Master vs. Slave DSI
	Slave Functions
	Slave Functions (cont)
	Additional Master Functions
	Additional Master Functions
	IPC Calls
	Helper Functions that should be used
	Helper Functions that should be used
	Overview
	Writing a GridFTP Client
	Initialization
	Checking Features
	Attributes
	Attributes (Cont)
	Attributes (Cont)
	Attributes (Cont)
	Mode S versus Mode E
	Plug-Ins
	Plug-Ins (Cont.)
	Plug-Ins (Cont.)
	Plug-Ins (Cont.)
	High Level Calls
	Parallel Put/Get
	Deactivate / Cleanup

